4 research outputs found

    Realisitic VTOL simulator

    Get PDF
    This master's thesis is focused on the development of a VTOL drone flight simulator. Two main objectives have been set. The first one is that the simulator must simulate all the flight phases of a VTOL. To make it possible, the simulator software is integrated with the simulation of the drone flight controller, which can be ArduPilot or PX4. The second objective is that it should be possible to control the simulated UAV via radio control, in the same way that we would do with a real drone. The thesis is structured in four chapters. In the first chapter, we do a study of the different types of VTOL drones. There are mainly three types: tailsitters, tiltrotors, and QuadPlanes. The three flight phases of a VTOL (vertical take-off and landing, transition and horizontal flight) are also studied. The advantages of a VTOL over a fixed-wing and a multirotor are studied. Finally, we analyse the characteristics of the VTOL that Venturi is developing, called V1. The second chapter summarizes the European laws that affect drones. There are currently two laws: Delegated Regulation 2019/945 and Implementing Regulation 2019/947. The first regulation classifies drones into five classes, according to their capabilities and characteristics. The second regulation deals with the rules and procedures that drones must fulfil. Operations are classified into three categories: open, specific and certified. In the third chapter, a study of the software that is being used for simulation of UAVs is done. The pros and cons of each option are analysed. In view of this study, Gazebo, a robot simulation environment, is chosen for this project. Finally, the last chapter explains the structure of the software that has been developed to carry out the desired simulation. Then, to test this simulator, tests are done with two different QuadPlane models: a model designed by Gazebo and a model of the Venturi V1. Three tests are performed for each of these QuadPlane models: 1) a test of the rotation of the engines and movement of the control surfaces; 2) a test in which the UAV must follow a pre-planned mission; and 3) a test in which we try to control the drone with a joystick. For the first UAV model, the three tests are satisfactory; in particular, the computed average error when following the planned mission is 1.9 m. Moreover, in the joystick control test, the drone responds perfectly to the controls, just like a real VTOL. For the Venturi V1, the first test is satisfactory, but unfortunately the second and third tests cannot be carried out, likely due to an error in the Gazebo model of the V1. As a result of this project, the developed simulator is being integrated in Venturi with a computer vision system for detection of pedestrians, to make safer landings, and for detection of the power lines, so that the UAV can follow them autonomously during power line inspection missions

    Sistema de navegaci贸 indoor de baix cost per drons

    Get PDF
    Premi HEMAV 2019 al millor TFMThe final degree project is based on the design of a low cost navigation system for indoor environments that is able to use in a drone. To prove the system in a real experiment a drone is built to use with the designed navigation system and to make flight tests. The project is structured in four big chapters. The first chapter studies the actual state of art of the different navigation systems that exists and are used. We make a study of each of the existing possibilities. As a result of the study, the selected technology to use in the navigation system is the optic, that is to say, the data comes from cameras. The selected cameras are the depth camera Intel RealSense D435 and the tracking camera Intel RealSense T265. The second chapter summarizes the laws and mathematical equations with which we mathematically model drone movements. It also explains how PID controllers work. This controller is the most commonly used controller in drone flight controllers. This chapter serves to understand how drones fly and how they stabilize. In the third chapter, we expose all the selected components used to build the drone in order to test the indoor navigation system. One of the main criteria to select the drone components was the cost of them. Finally, we made two flight test to understand the difference between fly in an outdoor space with GPS signal and fly in an indoor space without GPS signal. In last chapter, we explain the design of the indoor navigation system. Once the indoor navigation system was built and test with the drone, the results were very satisfactory. First of all we prove the zero capacity that a drone has to navigate in an indoor space without GPS signal and then, we have observed that using the indoor navigation system designed in this project, the drone is able to navigate in any environment without GPS signal.El treball de fi de grau est脿 basat en el disseny d鈥檜n sistema de navegaci贸 per a espais interiors de baix cost que sigui capa莽 de fusionar-se amb un dron. Per tal de provar el sistema que dissenyem es construeix un dron per fusionar-lo al sistema i fer les proves de vol. El treball est脿 estructurat en quatre grans cap铆tols. El primer cap铆tol estudia l鈥檈stat de l鈥檃rt actual sobre els diferents sistemes de navegaci贸 que existeixen i s鈥檈stan utilitzant. Es fa un estudi de cadascun de les existents possibilitats. Com a resultat d鈥檃quest estudi, la tecnologia escollida per l鈥櫭簊 en el sistema de navegaci贸 茅s l鈥櫭瞤tica, 茅s a dir, la basada en informaci贸 provinent de c脿meres. Les c脿meres escollides s贸n la c脿mera de profunditat Intel RealSense D435 i la c脿mera de seguiment Intel RealSense T265. El segon cap铆tol resumeix les lleis i equacions matem脿tiques amb les quals modelem matem脿ticament els moviments d鈥檜n dron. Tamb茅 tracta com funciona el controlador PID que fan servir la gran majoria dels controladors de vol dels drons. Aquest cap铆tol serveix per entendre com volen els drons i com s鈥檈stabilitzen. En el tercer cap铆tol expliquem l鈥檈lecci贸 de tots els components amb els quals hem constru茂t el dron per tal de poder posar a prova el sistema de navegaci贸 indoor. Un dels principals criteris a l鈥檋ora de seleccionar els elements del dron ha sigut el cost d鈥檃quests. Finalment fem dues proves de vol per entendre la difer猫ncia entre volar sota el senyal GPS i volar en un espai interior on no arriba el senyal GPS. L鈥櫭簂tim cap铆tol parla del disseny del sistema de navegaci贸 indoor. Un cop el sistema de navegaci贸 indoor ha estat dissenyat i provat amb el dron, els resultats obtinguts han sigut positius. Primer de tot hem comprovat la nul路la capacitat que t茅 un dron de navegar en un espai interior sense senyal GPS. I posteriorment hem vist que amb la utilitzaci贸 del sistema de navegaci贸 indoor ha sigut possible navegar en un espai on no arriba el senyal GPS.Award-winnin

    Sistema de navegaci贸 indoor de baix cost per drons

    No full text
    Premi HEMAV 2019 al millor TFMThe final degree project is based on the design of a low cost navigation system for indoor environments that is able to use in a drone. To prove the system in a real experiment a drone is built to use with the designed navigation system and to make flight tests. The project is structured in four big chapters. The first chapter studies the actual state of art of the different navigation systems that exists and are used. We make a study of each of the existing possibilities. As a result of the study, the selected technology to use in the navigation system is the optic, that is to say, the data comes from cameras. The selected cameras are the depth camera Intel RealSense D435 and the tracking camera Intel RealSense T265. The second chapter summarizes the laws and mathematical equations with which we mathematically model drone movements. It also explains how PID controllers work. This controller is the most commonly used controller in drone flight controllers. This chapter serves to understand how drones fly and how they stabilize. In the third chapter, we expose all the selected components used to build the drone in order to test the indoor navigation system. One of the main criteria to select the drone components was the cost of them. Finally, we made two flight test to understand the difference between fly in an outdoor space with GPS signal and fly in an indoor space without GPS signal. In last chapter, we explain the design of the indoor navigation system. Once the indoor navigation system was built and test with the drone, the results were very satisfactory. First of all we prove the zero capacity that a drone has to navigate in an indoor space without GPS signal and then, we have observed that using the indoor navigation system designed in this project, the drone is able to navigate in any environment without GPS signal.El treball de fi de grau est脿 basat en el disseny d鈥檜n sistema de navegaci贸 per a espais interiors de baix cost que sigui capa莽 de fusionar-se amb un dron. Per tal de provar el sistema que dissenyem es construeix un dron per fusionar-lo al sistema i fer les proves de vol. El treball est脿 estructurat en quatre grans cap铆tols. El primer cap铆tol estudia l鈥檈stat de l鈥檃rt actual sobre els diferents sistemes de navegaci贸 que existeixen i s鈥檈stan utilitzant. Es fa un estudi de cadascun de les existents possibilitats. Com a resultat d鈥檃quest estudi, la tecnologia escollida per l鈥櫭簊 en el sistema de navegaci贸 茅s l鈥櫭瞤tica, 茅s a dir, la basada en informaci贸 provinent de c脿meres. Les c脿meres escollides s贸n la c脿mera de profunditat Intel RealSense D435 i la c脿mera de seguiment Intel RealSense T265. El segon cap铆tol resumeix les lleis i equacions matem脿tiques amb les quals modelem matem脿ticament els moviments d鈥檜n dron. Tamb茅 tracta com funciona el controlador PID que fan servir la gran majoria dels controladors de vol dels drons. Aquest cap铆tol serveix per entendre com volen els drons i com s鈥檈stabilitzen. En el tercer cap铆tol expliquem l鈥檈lecci贸 de tots els components amb els quals hem constru茂t el dron per tal de poder posar a prova el sistema de navegaci贸 indoor. Un dels principals criteris a l鈥檋ora de seleccionar els elements del dron ha sigut el cost d鈥檃quests. Finalment fem dues proves de vol per entendre la difer猫ncia entre volar sota el senyal GPS i volar en un espai interior on no arriba el senyal GPS. L鈥櫭簂tim cap铆tol parla del disseny del sistema de navegaci贸 indoor. Un cop el sistema de navegaci贸 indoor ha estat dissenyat i provat amb el dron, els resultats obtinguts han sigut positius. Primer de tot hem comprovat la nul路la capacitat que t茅 un dron de navegar en un espai interior sense senyal GPS. I posteriorment hem vist que amb la utilitzaci贸 del sistema de navegaci贸 indoor ha sigut possible navegar en un espai on no arriba el senyal GPS.Award-winnin

    Sistema de navegaci贸 indoor de baix cost per drons

    No full text
    Premi HEMAV 2019 al millor TFMThe final degree project is based on the design of a low cost navigation system for indoor environments that is able to use in a drone. To prove the system in a real experiment a drone is built to use with the designed navigation system and to make flight tests. The project is structured in four big chapters. The first chapter studies the actual state of art of the different navigation systems that exists and are used. We make a study of each of the existing possibilities. As a result of the study, the selected technology to use in the navigation system is the optic, that is to say, the data comes from cameras. The selected cameras are the depth camera Intel RealSense D435 and the tracking camera Intel RealSense T265. The second chapter summarizes the laws and mathematical equations with which we mathematically model drone movements. It also explains how PID controllers work. This controller is the most commonly used controller in drone flight controllers. This chapter serves to understand how drones fly and how they stabilize. In the third chapter, we expose all the selected components used to build the drone in order to test the indoor navigation system. One of the main criteria to select the drone components was the cost of them. Finally, we made two flight test to understand the difference between fly in an outdoor space with GPS signal and fly in an indoor space without GPS signal. In last chapter, we explain the design of the indoor navigation system. Once the indoor navigation system was built and test with the drone, the results were very satisfactory. First of all we prove the zero capacity that a drone has to navigate in an indoor space without GPS signal and then, we have observed that using the indoor navigation system designed in this project, the drone is able to navigate in any environment without GPS signal.El treball de fi de grau est脿 basat en el disseny d鈥檜n sistema de navegaci贸 per a espais interiors de baix cost que sigui capa莽 de fusionar-se amb un dron. Per tal de provar el sistema que dissenyem es construeix un dron per fusionar-lo al sistema i fer les proves de vol. El treball est脿 estructurat en quatre grans cap铆tols. El primer cap铆tol estudia l鈥檈stat de l鈥檃rt actual sobre els diferents sistemes de navegaci贸 que existeixen i s鈥檈stan utilitzant. Es fa un estudi de cadascun de les existents possibilitats. Com a resultat d鈥檃quest estudi, la tecnologia escollida per l鈥櫭簊 en el sistema de navegaci贸 茅s l鈥櫭瞤tica, 茅s a dir, la basada en informaci贸 provinent de c脿meres. Les c脿meres escollides s贸n la c脿mera de profunditat Intel RealSense D435 i la c脿mera de seguiment Intel RealSense T265. El segon cap铆tol resumeix les lleis i equacions matem脿tiques amb les quals modelem matem脿ticament els moviments d鈥檜n dron. Tamb茅 tracta com funciona el controlador PID que fan servir la gran majoria dels controladors de vol dels drons. Aquest cap铆tol serveix per entendre com volen els drons i com s鈥檈stabilitzen. En el tercer cap铆tol expliquem l鈥檈lecci贸 de tots els components amb els quals hem constru茂t el dron per tal de poder posar a prova el sistema de navegaci贸 indoor. Un dels principals criteris a l鈥檋ora de seleccionar els elements del dron ha sigut el cost d鈥檃quests. Finalment fem dues proves de vol per entendre la difer猫ncia entre volar sota el senyal GPS i volar en un espai interior on no arriba el senyal GPS. L鈥櫭簂tim cap铆tol parla del disseny del sistema de navegaci贸 indoor. Un cop el sistema de navegaci贸 indoor ha estat dissenyat i provat amb el dron, els resultats obtinguts han sigut positius. Primer de tot hem comprovat la nul路la capacitat que t茅 un dron de navegar en un espai interior sense senyal GPS. I posteriorment hem vist que amb la utilitzaci贸 del sistema de navegaci贸 indoor ha sigut possible navegar en un espai on no arriba el senyal GPS.Award-winnin
    corecore